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Seven- and 10-membered cyclic thioenamino peptides, that is, 1,4-thiazepinone (11) and cyclic thioena-
mino peptide 9 (which represents a potential c-turn mimetic), were synthesized, and the structure of 11
was secured by X-ray diffraction analysis of its TFA salt. The aforementioned compounds were prepared
in solution and by solid-phase synthesis. Additionally, we have prepared thioenamino diketopiperazine
synthon 16.

� 2008 Elsevier Ltd. All rights reserved.
Callynormine A,1 a new type of sponge-derived cyclic peptide,
possessing an endiamino functionality, instead of the lactone of
depsipeptides, has prompted the synthesis of cyclic endiamino
and thioenamino peptides. Cyclic endiamino and thioenamino
peptides are expected to be of interest because of their restricted
conformations, and their potential ability to probe the topography
of enzyme active sites and to generate inhibitors devoid of the
typical therapeutic shortcomings of peptides. Moreover, thioena-
mino and endiamino peptides have been reported for their ability
to mimic protein secondary structures.2–4 Cyclization of ‘alpha,
omega’ amino enol-tosylates is a good route for the preparation
of cyclic thioenamino peptides.2–7

Herein, we describe reactions of formylglycine (FGly) in solu-
tion and with the hitherto unknown solid-supported FGly. It is
shown that supported FGly reacts with amines and with nucleo-
philic thiols in the same manner as FGly-OTs in solution.

It is difficult to compare the yields obtained under solution- and
solid-phase conditions, as no optimization of the latter reaction
was attempted and the extent of the resin loading is unknown.

Preparation of linked solid phase FGly, for example, 2, was
carried out in two steps. First Swern oxidation of serine [(COCl)2,
DMSO, DIPEA, DCM, �78 �C] to the unstable a-formylglycine, fol-
lowed by trapping of its enol tautomer with a sulfonyl chloride
resin,8 gave, after slow warming to room temperature, the desired
polymer-supported FGly 2.

Subsequently, we examined the reactivity of the supported FGly
2 toward reactions with nucleophiles. Overnight stirring of com-
pound 2a or 2b with an amine or thiol in the presence of base
ll rights reserved.

an).
led to endiamine 3,9 and thioenamino peptides 4–7 (Table 1).
The structures of compounds 3–7 were elucidated from 1D and
2D 1H NMR spectra and mass spectrometry.

The Z configuration of endiamine 3,2 and of thioenamino pep-
tides 4–6 was deduced from the NOEs, observed, between the
methoxy group and the vinyl proton. Compound 7,10 with the
Cbz-protecting group, on the other hand, did not show a positive
NOE correlation, and therefore is suggested to be of E configura-
tion. (The NH signal could not be observed in CDCl3 or in DMSO-
d6).

Among the secondary structures of peptides, reverse turns that
include b- and c-turns are known as structural elements that are
involved in biomolecular recognition events.11 In proteins or pep-
tides, b-turns are characterized by a 10-membered ring incorporat-
ing a single hydrogen bond, and are more frequent than c-turns
which form seven-membered rings with a single hydrogen bond
(Fig. 1).12,13 The latter are found mainly in small peptides but are
rare in proteins.

Compounds 9 (Scheme 2) and 11 (Scheme 1) were synthesized
as model compounds. The cyclic seven-membered 1,4-thiazepi-
nones 11 and 14 were synthesized from compound 10 in solution,
or from 13 by solid-phase synthesis, respectively.

The preparation of 1,4-thiazepinone 11 was achieved from
Boc-Cys(Tr)-Ser-OMe,14 which was oxidized and trapped as the
appropriate enol-tosylate 10 (Scheme 1). Deprotection with TFA
(50%) of both the N-Boc and S-Tr-protecting groups, of 10, followed
by base-induced cyclization afforded compound 11,15 and with
excess TFA, its salt 12.

Compound 12 was obtained as crystals which enabled X-ray dif-
fraction analysis to confirm the structure (Scheme 1).16 Selective
deprotection of the thiol group of 10 (Scheme 1) under mild acidic
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a Solution-phase synthesis: 1 equiv of nucleophile, 4–5 equiv of Et3N. The yield
shown is for the isolated product starting from the protected enol tosylate 1.

b Solid-phase synthesis: 10 equiv of nucleophile, 15 equiv of Et3N. The yield (not
shown) of isolated product is calculated for the two steps (oxidation and nucleo-
philic substitution) based on 100% resin loading, and as the extent of the resin
loading is unknown, it is difficult to compare the yields in solution and solid phase.
For estimated yields, see Supplementary data.

c Performed only by solid-phase synthesis.

X-ray structure of compound 12.16
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Scheme 1. The synthesis of 1,4-thiazepinones.
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conditions (2% TFA), followed by addition of base, led to compound
14.17

Next, the solid-supported FGly dipeptide 13, obtained from
Boc-Cys(Tr)-Ser-OMe, after selective deprotection of the thiol
group, under mild acidic conditions (2% TFA), gave, as in solution,
after treatment with base, the desired cyclic thioenamino peptide
The thioenamino group as a
γ-turn mimetic
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Figure 1. Cyclic thioenamines as turn-like mimetics: (a) b-turn tetrapeptide 8,3

involving a 10-membered hydrogen bond; (b) c-turn compound 9, containing a
seven-membered hydrogen bond.
14 (Scheme 1). Another seven-membered cyclic thioenamino
1,4-thiazepinone,18 prepared in a different way, has been reported
for its therapeutic potential as an ACP/NEP dual inhibitor.18

The cyclic 10-membered thioenamino tripeptide 9 was synthe-
sized both from compound 15 in solution, and from 16 by solid-
phase synthesis (Scheme 2). The structure of 9 was confirmed by
MS and 1D and 2D NMR including 15NH-HMBC (Fig. 2).19 A 2E con-
figuration is suggested for 9 based on the NOE measured between
H-2 and H-6, which is only possible, according to a model, for the
2E configuration. To the best of our knowledge, this is the first
reported cyclic thioenamino peptide with an E configured double
bond, formed most likely to relieve ring strain.

The b-turn of the previously synthesized cyclic thioenamino
peptide 83 is compared with the potential c-turn of 9, as suggested
by NMR measurements (Fig. 1).

The configuration of 9 was confirmed by the temperature coef-
ficients of the amide protons in DMSO-d6.20 Namely, a small coef-
ficient was measured for the thioenamino NH proton (NH-FGly,
�3.8 ppb/K), compared to the NH-Cys proton (�8.4 ppb/K). The
NH-Phe proton exhibited an intermediate temperature coefficient
(�4.5 ppb/K), most likely due to a hydrogen bond with the Boc car-
bonyl). The NH-FGly and NH-Phe coefficients indicated that they
were both involved in intramolecular hydrogen bonds. The NOESY
15
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Scheme 2. Synthesis of 10-membered cyclic thioenamino tripeptide 9.
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Figure 2. (a) ( ) Selected 13CH-HMBC and ( ) selected HH-COSY correlations
and (b) ( ) selected 15NH-HMBC and selected ( ) NOESY correlations for
compound 9.
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1050 L. Goren et al. / Tetrahedron Letters 50 (2009) 1048–1050
transannular cross peak between the a-Phe proton (H-6) and the
vinylic thioenamino proton (H-2, Fig. 2) further supported the pos-
sible c-turn configuration.

Another application of the solid-phase methodology is demon-
strated by the synthesis of diketopiperazine 19,18 which is a poten-
tially interesting bioactive21 synthon (Scheme 3).22

The solution synthesis of diketopiperazines via enol-tosylates
was reported earlier by us.3 The solid-phase synthesis requires
two synthetic steps on the resin, that is, deprotection of the N-
Boc group of compound 17 (synthesized from Val-Ser), with TFA,
followed by base treatment to afford synthon 18, which after thiol
substitution afforded compound 19.23

In summary, we have demonstrated two synthetic approaches,
one in solution and a new solid-phase route, for the preparation of
thioenamino and endiamino compounds. Inter alia, the synthesis of
1,4-thiazepinone 11 and of the 10-membered thioenamino cyclic tri-
peptide9wasdemonstrated.Thelattercompoundmostlikelyprefers
a c-turn-like conformation, hence being a potential c-turn motif.

Reverse turn mimetics as prepared herewith are considered to
be promising candidates for drug discovery due to their ability to
function as agonists of important biological processes.24
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